
Model Checking Autonomy
Models for a Martian Propellant

Production Plant

Peter Engrand
NASA, Kennedy Space Center FL

Peter.engrand-1@ksc.nasa.gov

Abstract – Expanded exploration of our Solar System
will require more sophisticated autonomous assets to be
developed and deployed. Model based Autonomous
control system is a primary technology solution to this
problem. A critical factor in the successful operations of
these systems is to ensure that the models behave
correctly. The Kennedy Space Center (KSC) has been
pursing in conjunction with Ames Research Center the
application of model-checking techniques for an
Intelligent Systems Software for an In-Situ Resource
Utilization (ISRU) plant for future manned Mars
missions. Model checking is a formal technique which
can exhaustively evaluate a finite state model for
satisfiability of a logical property. The main goal of our
current model checking effort is to develop tools and
methodologies for efficient evaluation and certification
of future Livingstone modeling applications which are
declarative in form. As a result of this investigation a
potential new re-usable specification pattern was derived
which allows one to check a model for the existence of
correct variable dependencies within the model.

Introduction – The human exploration of Mars has the
potential to re-ignite public interest in the space program.
As NASA moves towards the completion of the
International Space Station, work is underway to prepare
mankind for the next step in the exploration and
colonization of our solar system. The Kennedy Space
Center (KSC) has been pursing in conjunction with
Ames Research Center application of Intelligent
Systems Software to an In-Situ Resource Utilization
(ISRU) plant based on the Reverse Water Gas Shift
reaction (RWGS). This plant, built in KSC's Applied
Chemistry Laboratory, is capable of producing a large
amount of Oxygen with a small quantity of seed
Hydrogen. In a human Mars mission, this plant would
be required to operate for 500 or more days without
human intervention. KSC has considerable experience
applying intelligent systems to launch processing
operations. This experience is being used to apply
Model-Based Reasoning technologies to the control of
the ISRU plant. The heart of the RWGS intelligent
system is a high-level system model of the test bed
written in the Livingstone modeling language. These

models are used by intelligent control agents for test-bed
state identification and mode recovery operations.

The decision to use model-based technology as part of
the overall control software approach adds complexity to
the task of not only code design and development but
also in its verification and validation. Part of the RWGS
V&V process being employed on these models is to use
analytical methods and tools, in particular the use of
temporal logic and model checking. The models are
encoded as finite-state machines which makes them
amenable to verification and validation using model-
checking tools. Desired properties which the software
models should exhibit are represented by temporal
formulas. The task of the model-checker is to see if the
model satisfies the temporal formula. Currently,
analytical verification and debugging of RWGS
Livingstone models employs a model checking tool
called SMV as the preferred tool of choice due to its
ability to explore entire state spaces efficiently (which is
one of the raison-d’être of the model checking approach
in addition to its relative amount automation). This
paper reviews the results of this analytical effort so far at
KSC.

This paper will approach the model checking task in a
layered approach beginning first with a discussion of the
Kennedy Space centers Spaceport Engineering concept.
The next section will begin the describing the application
by describing a manned Mars Mission model which
includes an in-situ autonomous propellant production
plant This will be followed by a description of KSC’s
Reverse water Gas Shift prototype which serves as a
technology testbed for the application of In-situ resource
utilization and autonomous control. The next section
will discuss the method of autonomous control using the
Ames’ Model-Based Autonmous control System called
Livingstone (a fuller treatment of this topic can be read
in Larson & Goodrich [3], from which these particular
sections are based on). The rest of the paper deals with
the practical issues encountered using modelchecking
techniques to evaluate the Livingstone RWGS models.

KSC Spaceport Engineering Concept

Historically the Kennedy Space Center has been one of
the planet’s pre-eminent launch sites with over fifty
years of experience launching both manned and un-
manned space vehicles. Over this past half century it
has been found that the majority of life cycle costs at a
launch site are attributable to operations and support
activities (e.g. launch vehicle and payload assembly,
integration, test &Checkout, fueling etc.). Due to the
complexity (and sometimes hazardous) operations of
launching a mass into space a large complement of

skilled technical personnel are required for a safe and
successful launch. A key goal of the agency is to
provide more efficient exploitation of space by reducing
the costs of accessing space. Given the current labor
intensive approach to launch site operations greater
degrees of automation must be employed to increase
operational efficiencies. To that end KSC is focusing on
developing automated launch site technologies which not
only help to reduce cost and enhance safety but also to
develop technology that will be applicable across
programs and environments (including extra-terrestial
launch sites). Dr. Zubrin, in his book The Case for Mars
[1], calls for the use of indigenous resources to lower
the mass that must be carried to Low Earth Orbit. This
concept, called In-Situ Resource Utilization (ISRU), has
been captured in NASA’s new design reference missioni

which envisions an initial deployment of a robotic fuel
production facility and depot two years prior to a manned
landing. Figure 1 shows a graphic summary of this
mission concept. There are considerable advantages to
using indigenous resources. One of the most significant
drivers for the size of a Mars exploration launch vehicle
is the amount of mass you need to carry to Mars and
back. Calculations show that for every

The Reverse Water Gas Shift (RWGS) is one potential
solution for the production of propellants on Mars. The
reaction works as follows: Martian atmospheric carbon
dioxide is combined with hydrogen (brought from earth)
in the following reaction.

CO2 + H2 = CO + H2O
DH = +9 kcal/mole

The water vapor produced, condensed and collected in
various water trap tanks and is electrolyzed, the oxygen
is stored and the hydrogen is recovered and re-circulated
into the input stream. Since all the hydrogen is reused,
the import requirements from earth are small. A
schematic of the prototype is shown in figure 2 .

Manned Mars mission profiles call for ISRU systems to
operate unattended on the Mars surface for two years or
more without human intervention. During such a long
period it is certain that some subsystem and
measurement failures will occur. Satellites in earth orbit
are designed for such lifetimes; but the Mars mission will
not enjoy the luxury of round-the-clock human operators
who are in constant contact with the vehicle . The task of
the autonomous system is to be truly fault-tolerant by
taking corrective action without ground intervention.
This requires the ability to continuously adapt to
degraded sensor environments as well as automated
planning for resource and redundancy management.

Opportunity 1 (2011): 3 flights

Cargo-

Hab-1

ERV-1

Hab-2

Return Habitat,
chemical TEI
Stage (to Mars
orbit)

Crew
Hab/Lab

Ascent Vehicle,
Prop Production,
Surface
Exploration Gear

Cargo delivered to LEO on Large
Launch Vehicle, rendezvous with
NTR

Opportunity 2 (2013): 1 flight

Outbound Hab delivered to LEO on Large Launch
Vehicle, Crew of 6 delivered to LEO in Shuttle. Both

rendezvous with NTR.

Crew of 6 Aerocaptures and Lands in
Outbound Hab. Surface rendezvous with

pre-deployed assets

Crew ascends to
Return Hab in
capsule

Crew returns to
Earth in Return
Hab (ERV-1)

MAV/EEV

Return

Crew Direct Enters
in capsule, Apollo-
style

Figure 1. Model for a Manned Mars Mission

Autonomous Control of a RWGS System

The RWGS test bed is designed for unattended ISRU,
and its control system easily illustrates many features
and benefits of intelligent software..

RWGS control strategy To achieve maximum oxygen
production, the RWGS system must operate at its full
design capacity as determined by such factors as the
reactor size and membrane surface area. The system
must control the feed flow relationship between
hydrogen and carbon dioxide carefully so as not to waste
reactant or slow production. If component degradation
occurs, the autonomous system must redirect flows to
adapt to changing circumstances. Understanding of this
strategy is of fundamental importance in deriving
specifications for the model checking task.

H2

RWGS

CONDENSER

ELECTROLYZER

COMPRESSOR

WATER TRAP

WATER TRAP

VENT
OXYGEN

HEAT SINK

VALVE & FLOW

CONTROLLERS

VENT
M

E
M

B
R

A
N

E

CO2

R5

R6

A7
R14

R15

LL5

 Figure 2. RWGS Schematic

RWGS control strategy To achieve maximum oxygen
production, the RWGS system must operate at its full
design capacity as determined by such factors as the
reactor size and membrane surface area. The system
must control the feed flow relationship between
hydrogen and carbon dioxide carefully so as not to waste
reactant or slow production. If component degradation
occurs, the autonomous system must redirect flows to
adapt to changing circumstances. Understanding of this

strategy is of fundamental importance in deriving
specifications for the model checking task.

RWGS and Livingstone

The RWGS test bed uses Livingstone monitoring and
diagnosis software developed at Ames Research Center.
Ames has been working with KSC to apply Livingstone
to ISRU since 1998. The software provides built-in
autonomy capabilities for RWGS. The heart of the
RWGS intelligent system is a high-level system model of
the test bed written in the Livingstone modeling
language. The model is a simple, declarative statement
of the behavior of RWGS components and the
connections between them. Information from the design
of the test bed is simply translated, part-by-part and
concept-by-concept into Livingstone statements. As an
example of a livingstone model a valve module
containing mass flow controllers (FC1 and FC2) and
solenoid valves (SV1, SV2 and SV3) regulates the gas
flow is shown in figure 4. The Livingstone model is
hierarchical. A flowBranch consists of a two-way
solenoid valve and a mass flow controller. Two
flowBranches are connected to a three-way solenoid to
make a flowModule. The behavior of the solenoid
valves, and flow controllers are modeled as components.
The engineer defines finite states for the valve
components corresponding to various normal and
abnormal operating modes. The labels on the links
correspond to device commands. Logical propositions
define the behavior of the valve while it is in the
associated mode. One of the key benefits of this
modeling paradigm is that the engineer is only
responsible for describing the local behavior of each
component, the relationships that exist between
components and any “system concepts” such as mass
and/or energy balances that affect operation.
Livingstone then uses this specification to compose a
larger, system model that can be used to reason about the
global behavior of the entire system given the mode of
each component. Once the model is complete and
connected to test bed instrumentation, the advisory and
autonomy features of the Livingstone engine are
available for use. These uses include system health
monitoring, diagnosis of component failures, flexible
reconfiguration, redundancy management, adaptability to
degraded environments, and tolerance for component
faults and incomplete sensor information.

open
F-in = F-out
P-in = P-out

closed
F-out = 0
P-out = nom

stuck-open
F-in = F-out
P-in = P-out

close

open

stuck-closed
F-out = 0
P-out = nom

Nominal modes

Failure modes

cycle-valve cycle-valve

Figure 5: Valve model
 Figure 3. Valve Model

Model-Checking the Prototype RWGS
Models
Due to the extended duration of autonomous operations
correct system control depends critically on the
correctness of the Livingstone models. Conventional
approaches to V&V of models which rely on informal
testing techniques ,though straight forward to implement,
suffer from a lack of completeness when attempting to
answer questions that deal with the universal behavior of
the model. Livingstone models are declarative in nature
meaning that instead of enumerating all behaviors the
developers simply state constraints on the system leaving
specific model behaviors implicit.

“valve module” schematic

((defmodule flowModule (?name)

(:structure
(solenoidValve3Way (sv3Way ?name))

(flowBranch (branch1 ?name))
(flowBranch (branch2 ?name))))

(defmodule flowBranch (?name)
(:structure
(flow-control-valve (fc ?name))

(flow-sensor (flowSensor ?name))

(solenoidValve2Way (sv2Way ?name))))

Livingstone model

Figure 4: Translating schematic to hierarchical modelFigure 4. Translating a schematic into Livingstone

Although Livingstone models are inherently more
complex than most conventional software applications
the fact that it is represented as a finite state machine
make it conducive for model-checking techniques to be
applied to it in the evaluation process. A caveat must be
stated though in that although model-checking does
allows for an exhaustive search of all states in a model
the obvious drawback is the size of the state-space being
checked (otherwise known as the “State Explosion
Problem”).

One of the fundamental issues for effective V&V of
models deals with the construction of meaningful
specifications that validate the model (where a rough and
ready definition of “meaningful” is a temporal form
which captures some global system behavior, such as
something stated as a high level design specification).
The specifications should be structured in order to detect
three types of modeling errors they include 1) errors in
which simulation results are rejected although in fact
they are sufficiently credible (this is referred to as
“Model Builder’s Risk”), 2) errors in which invalid
simulation results are accepted, even though they are not
sufficiently credible (Model Users Risk), and 3) Errors in
which invalid simulation problem is incorrectly
formulated and the wrong problem is solved resulting in
an irrelevant simulation. An adequate understanding of
RWGS behavior is required in order to generate V&V
specifications for detection of the above three modeling
errors.

Since the focus of this investigation is to explore optimal
methodologies for applying model checking methods for
verifying Livingstone models for ISRU control
applications verification of simulations are defined as:
The process of determining that the Livingstone RWGS
model implementation accurately represents the
developer’s conceptual description and specification.
Before verification is performed the set of verification
specifications need to be stated for which the
Livingstone RWGS model must satisfy. These
specifications are given a logical formalism which assert
how the system evolves over time. Temporal logic is
commonly used for this purpose where the meaning of a
formula is determined with respect to a labeled transition
graph. Computational Tree Logic (CTL) is the particular
type of temporal logic used for specification
representation which models time as having a branching
structure. The specific model checking tool used is SMV
developed at Carnegie Mellon University (CMU). SMV
is based on a language for describing hierarchical
finite–state concurrent systems. In order to perform
verification on the Livingstone RWGS models the
specification as well as the livingstone model must first
be translated into an SMV program. This task is
performed automatically by a translator developed by

both CMU and the Ames Software Engineering Group
(see Pecheur & Simmons [5]). Once the translation of
both model and specification have occurred SMV then
proceeds to check that the model satisfies the
specification. If the result is negative SMV will provide
the user with a trace which can be used as a counter-
example for the checked property to aid the developer in
tracking down the source of the error.

Statement of Formal Verification Problem :

The V&V problem for Livingstone models can be
schematized as shown in fig. 5 . In words what the
schematic states is the following :
Given :
1 . A Livingstone model which is an abstraction of

some physical system.
2. A mathematical model of that physical system ;
Find a corresponding abstraction that maps from the
physical property to the CTL property such that, the
Livingstone model satisfies the CTL property iff the
physical property satisfies the physical system.

Physical
System

Livingstone
Model

Livingstone
V&V

Requirements
Physical

Properties

Abstraction

Satisfies Satisfies

Modeller's
conceptual

model

 Modelling

Requirements

Evaluator's
conceptual

model

Abstraction

 Figure 5.

Another way of stating this is the following :

1. Given a physical system governed by physical laws,
2. The Livingstone model is abstracted from physical

system
3. The Evaluator expresses properties of the physical

system (e.g. ODEs, PDEs, Discrete transitions etc.)
4 . Abstract CTL properties from the physical

representations (properties) such that …
5. If the model satisfies the CTL properties…..
6. If and only if, the Physical system satisfies the stated

Physical properties.

This formal evaluation effort focused on the observation
of modeling fault “phenomena” (i.e. instances of fault
types) and then the investigation of the underlying
causes of the faults phenomena so that specification

properties could be inferred that could lead to future re-
usable specification patterns.
 These observations consisted of two modeling faults
(which can be viewed as instances of the previously
explained type 2 fault) which had been previously
encountered by the modelers and for which their causes
were also known a-priori to the verification
investigation.

The first fault to be investigated dealt with a
mis-modeled fluid flow behavior which existed in an
earlier version of an ISRU system. This system called
the Sabatier-Electrolysis works as follows: carbon
dioxide from the Martian atmosphere is reacted with
hydrogen (brought from earth). Carbon dioxide is
obtained by flowing Martian atmosphere through a
component called a sorption pump which contained a
catalytic bed that absorbs the CO2 content of the
atmosphere. Once the bed is saturated atmospheric in-
flow is stopped and the absorbed CO2 is extracted from
the catalytic bed through a heating process and pumped
through a set of flow branches to the rest of the system
where Liquid Methane (fuel) and oxygen (oxidizer) are
produced and stored.

INTAKE FANS INTAKE VALVES

SORPTION PUMP

SORP PUMP-TO-ATM

VENT VALVES

SORP PUMP-TO-SAB./
ZIRC.CELL VALVES

HTR A

HTR B

MARS AMBIENT
ATMOSPHERE

RADIATOR

Figure 6. Schematic showing Sorption pump and
neighboring components for a Sabatier-Electrolysis
ISRU

The modeling fault was manifested in the flow branch
outlet of the Sorption pump when the developers failed
to take into account a fluid flow property called
admittance of this flow-branch into the overall
computation of admittance in the model (admittance is a
measure of fluid impedance of pipes and orifices). This
omission led to the model manifesting flow through a
flow-branch when there should have been none (i.e. in

the situation where a valve upstream of a pipe, which
controlled flow through the flow branch, was in a closed
state the model showed flow being transmitted through
the branch). In order to detect this fault using CTL a
simple property was specified which stated the correct
behavior of flow through the flow branch when the
control valve was closed . I.e.

It should always be the case that if the CO2 source is off
(i.e. no flow is exiting from the Sorption Pump) then
there will be no flow through the component “z-flow-
module

SV : Valve

Electro : electrolyzer

RWGS : reactor rwgs_trap : tank

O2 : tank

(on (flow-out RWGS))

(on (flow-in rwgs_trap))

(on (flow-out rwgs_trap))

(on (flow-in O2))

(on (flow-in SV))

(on (flow-out SV))

(high-in (relative-flow-magnitude O2))

(high-out (relative-flow-magnitude rwgs_trap))

P P

 Figure 7. RWGS Schematic for 2nd fault

Where “z-flow-module” is the component name of the
specific flow branch (Sorp pump-to-Sab/zirc Cell Valves
in fig. 6). Or in CTL form as,

(:specification
(all (globally (implies (off (admittance outlet))
 (off (flow z-flow-module)))

When the the model and specification are translated and
processed by SMV a counter-example is returned
showing an inconsistent variable assignment (i.e. outlet
admittance = off and z_flow-module = high) detecting
the (sought for) problem with admittance property of this
flow module.

The second, and more interesting, fault is described as
follows. The model in which this fault occurred is
schematized in figure 8 . Figure 8 shows a schematic of
a preliminary RWGS Livingstone model, showing the
RWGS reactor connected to a condenser (rwgs_trap) ,
control valve (SV), another condenser (O2) and into the
electrolyzer. In this situation the developers wished to
model flow between the condenser tanks via a simple set

of constraints. A constraint described what should
happen if the rwgs trap was full and the control valve
open should result in the contents of the rwgs trap
emptying into the O2 trap (assuming no or negligible
flow into the rwgs trap and out of the O2 trap). In
Livingstone one way of representing this behavior was
as is an invariant (called a fact in Livingstone) such as,

;Fact
(And
(When (on (flow-out rwgs_trap))
(high-out (relative flow-magnitude rwgs_trap)))
(When (on (flow-in O2))
(High-in (relative-flow-magnitude O2)))

Where this fact states that if there is an out-flow of fluid
from the rwgs_trap then the rwgs_trap is in an emptying
state (high-out) and their should be flow into the O2 tank
and it should be in filling state (high-in). In fact what
was found by the developers during their normal testing
was that when the O2_trap was filling the rwgs_trap was
also filling. In reviewing the models the developers
discovered a discrepancy in the way this flow behavior
was constrained. In practice what was modeled was the
following,

;Facts
(And
(When (on (flow-out rwgs_trap))
(high-out (relative flow-magnitude rwgs_trap)))

 (When (on (flow-in O2))
 (High-in (relative-flow-magnitude rwgs_trap)))

As can be seen by comparing with the first fact the error
lies in the last proposition where the component rwgs-
trap is mistakenly in the place of where the O2-trap
component name should be.

Though a seemingly innocuous error this “mis-naming”
fault proved to be difficult to detect both using testing by
the developer and model checking with SMV. This was
due to the fact that by this single object name change a
new (and undesired) constraint was added, i.e.

(When (on (flow-in O2))
(High-in (relative-flow-magnitude rwgs_trap)))

and the desired constraint was non-existent, i.e.

(When (on (flow-in O2))
(High-in (relative-flow-magnitude O2)).

In order to detect this error in CTL the concept of
variable dependency was used. Variable dependency is a
way to check the relations introduced to approximate the
continuous physical constraints in the RWGS. When we

use the term variable dependency what we aim in
defining is a relational dependency between Livingstone
model variables (i.e. a variable Y functionally depends
on variable X if for a given X there can be only one Y).
Another way of stating this is; A variable Y is variable
dependent on a variable X if there exists a change that
can be made to X affecting Y. In terms of functions,
consider a function f with an input X and an output Y. If
two different input values X1 and X2 result in f yielding
two different outputs Y1 and Y2, then the output of f ,
Y, is dependent on the input X.

This dependency can only exist if it has first been
established that Y causally depends on X in the physical
domain. A Livingstone model does not say anything
about causal dependencies explicitly; everything is
expressed as logical constraints, one can only look for
functional dependency where causal dependency is
known to exist a-priori. Therefore if one wants to check
that a value of some attribute y is indeed a function of
attribute x then one can state this in CTL as,

(EF (some x & some y)) ⇒ (AG (some x ⇒ some y
))

In other words, if for some value of x you get some value
of y, then for the same x you always get the same value.

 The specific dependency we wish to check for is the
nature of the relative flow of the rwgs_trap. I.e.

 Spec :

 ∀ some-flow-in, some-flow-out, some-relative-flow,
relative-flow

EF (flow-in rwgs-trap = some-flow-in & flow-out rwgs-
trap = some-flow-out & relative-flow rwgs-trap = some-
relative-flow rwgs-trap) ➔

AG (flow-in rwgs-trap = some-flow-in & flow-ou rwgs-
trapt = some-flow-out & relative-flow rwgs-trap= some-
relative-flow rwgs-trap)

As can be seen this specification is a conjunction of two
separate propositions which would require SMV to
produce two separate traces, one for each proposition in
order to provide a complete counter-example for this
property.

EF p => AG q = EF ~p ∩ AG q

By design SMV only will give a single counter-example
trace, that for the EF p case. In practice using SMV,
applying this specification needs to proceed in a two
step manner. First, the entire specification was applied,

and as expected SMV failed the specification resulting in
a single trace for a failure of EF p one state long
(showing flow in and out to be off and the relative flow
magnitude being equal). The single state showing p is
present in the initial state

 Flow-out rwgs-trap = off
Flow-in rwgs-trap = off
Relative-flow-magnitude = equal

 1
st counter-example,

EF (some x & some y) is false

 Figure 8. First Counter -Example

The second step involved getting the second counter-
example from the specification. In order to do this the
second half of the specification was re-instantiated as a
separate specification using the flow and relative-flow
values from the first counter-example. Application of
this new specification generated the second counter-
example trace showing a two state trace beginning with
the rwgs_trap in a quiescent state and then transitioning
to a filling state even though there was no flow into or
out of the trap

 Flow-out rwgs-trap = off
Flow-in rwgs-trap = off
Relative-flow-magnitude = equal

 Flow-out rwgs-trap = off
Flow-in rwgs-trap = off
Relative-flow-magnitude = high-in

 Figure 9. . 2nd counter –example

Inspection of the error trace then demonstrated a problem
with the relative-flow magnitude of the rwgs-trap
showing an inconsistent set of variable assignments.

Results & Observations

The first three observations deal with the computational
efficiency of the model checker.

•Size of RWGS Model used which contained these two

faults scenarios is @ 1017 States. Although a relatively
large state space SMV needed less than a minute to
return a result. This was due to the structure of the
Livingstone model itself which was relatively “flat” (i.e.
the maximum depth of transitions were no more than
three deep).

• Size of Latest RWGS Model is estimated @ 1055
states

• An enhancement to SMV by Bwolen Yang [4],
 greatly enhances the memory performance of SMV
 for the larger version of the model.

• Writing a correct temporal specifications can be a
subtle an error prone task. Part of the task of writing
temporal specifications requires a need to “V&V”
the specification itself in order to check that the
syntax and form of the formula truly conveys the
correct semantics of the property one wants to check
for.

• As a result of this investigation of this error a new
specification pattern was derived which allows one
to check in a model that the correct variable
dependencies exist (and that valid causality
constraints exist among system components and
modules) within the model. A property specification
pattern is a generalized description of a commonly
occurring requirement on the permissible state/event
sequences in a finite-state model of a system. A
property specification pattern describes the essential
structure of some aspect of a system's behavior and
provides expressions of this behavior in a range of
common formalisms (see Dwyer, Avrunim, Corbett
[2]). One can think of a specification pattern as a
generic correctness property for a class of objects,
such as the property of avoidance of dead-locks in
concurrent/parallel systems. In terms of model
checking and SMV these two type 2 errors
characterized properties of the models which were
static in nature and did not involve reasoning about
the state transition properties of the model which is
the forte of SMV. The schematic in figure 10
summarizes the methodology for implementing this
pattern within SMV.

• As an added benefit during the investigation using
variable dependency, two additional modeling faults
were detected which went undetected during the
developers normal testing phase of the model.

Conclusion

Expanded exploration of our Solar System will require more
sophisticated autonomous assets to be developed and deployed
The Model based Autonomous system is a primary technology
solution to this problem. A critical factor in the successfu
operations of these systems is to ensure that the models behave
correctly, but due to their complexity conventional informa
testing techniques will need to be augmented by more forma
approaches. Toward this goal this paper presented some
preliminary observations and results in the use of model
checking techniques in the evaluation of a certain kind of mode
(i.e. declarative Livingstone models). As with any kind o
evaluation, the evaluation is only as good as it’s measure
therefore the generation of formal specifications is o
fundamental importance. The formal methods practitioner is
Challenged to craft a set of correct and concise tempora
specifications which capture behaviors that can query the mode
for safety and liveness properties This task is made easier i
many of these specifications can be captured as specifications
patterns which can be re-used for in evaluation of differen
modeling applications.

Perform
Causal
Analysis

Establish
Functional
Dependencies

MPL => SMV
Translation

 SMV

-Review
Counter-example
- Idenitfy variable &
values which contradict
specification

Analyze 2nd
Trace

Pass/Fail
 ?

 Fail 1st
 Spec
 ?

Obtain 2nd
counter-
example

Done

 Figure 10. Variable Dependency Methodology

References

[1] R. Zubrin and R. Wagner. The Case for Mars:
The plan to settle the Red Planet and why we must. The
Free Press, 1996.

[2] Property Specification for Finite-State
Verification, Dwyer M.B., Avrunin G.S., Corbett J.C.,
http://www.cis.ksu.edu/santos/spec-patterns, 1999.

[3] Intelligent Systems Software for Human Mars
Missions, Larson W.E., Goodrich C.H., 51st

International Astronautical Congress, Rio de Janeiro,
Brazil, 2000.

[4] Optimizing Symbolic Model Checking for
Invariant-Rich Models (abstract). B.
Yang, R. Simmons, R. Bryant, and D. O'Hallaron. In
Proc. of International Conference on Computer-Aided
Verification (CAV'99).

[5] Pecheur & Simmon

